Logic for Computer Science - Exam - January 23rd, 2024

Name (use capital letters):
Group and Year:

1. The domain is the set of reals. Translate the following proposition into first-order logic (step I: identify the predicates and the functions; step II: associate a signature; step III: write down the formula):

No matter how we choose a prime number, there is a prime number greater than it.
2. The domain is the set of persons. Translate the following proposition into first-order logic (step I: identify the predicates and the functions; step II: associate a signature; step III: write down the formula):

All students pay attention at the lecture, but not all students learn.
3. Show, by using a semantic argument, that:

$$
\text { the formula }((\exists \times \cdot \mathrm{P}(\times)) \vee \neg \mathrm{P}(\mathrm{a})) \text { is valid. }
$$

4.

Define the function free (which computes the free variables in a formula).
5. Find a formal proof using natural deduction for the following sequent:

$$
\{(\exists x \cdot P(x))\} \vdash(\exists x \cdot(P(x) \vee Q(x)))
$$

Rough copy.

