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Chapter 1

Motivation and
introduction

First-order logic, what we will be studying next, is an extension of propo-
sitional logic, extension that brings more expressivity. The additional ex-
pressivity is necessary in order to model certain statements that cannot be
expressed in propositional logic.

In propositional logic, we cannot express naturally the following statement:
All men are mortal.

To model a statement in propositional logic, we identify the atomic propo-
sitions. Then we associate to each atomic proposition a propositional variable.
The atomic propositions are the propositions that cannot be split into one or
more smaller propositions, linked among them by the logical connectives of
propositional logic: ¬, ∧, ∨, → and ↔.

We notice that the statement All men are mortal cannot be decomposed
into smaller statements linked among them by the logical connectives of propo-
sitional logic, as is described above. Therefore, in propositional logic, the
statement is atomic. So we associate to the entire statement a propositional
variable p ∈ A.

Let us now model the statement Socrates is a man. Obviously, to this
second statement we must associate another propositional variable q ∈ A.
Let us assume that p and q are true. Formally, we work in a truth assignment
τ : A → B where τ(p) = 1 and τ(q) = 1. Can we draw the conclusion that
Socrates is mortal in the truth assignment τ?

No, because to the statement Socrates is mortal we should associate a
third propositional variable r ∈ A. We cannot draw any conclusion on τ(r)
from τ(p) = 1 and τ(q) = 1. So, from the semantics of propositional logic, we
cannot draw the conclusion that r is true in any truth assignment that makes
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both p and q true. This is despite the fact that, in any world where All men
are mortal and Socrates is a man, we can draw the conclusion that Socrates
is mortal without failure. This difference between reality and our modelling
indicates that our modelling is not sufficient for our purposes.

First-order logic includes, in addition to propositional logic, the notion of
quantifier and the notion of predicate. The universal quantifier is denoted by
∀ and the existential quantifier is denoted by ∃.

A predicate is a statement whose truth value depends on zero or more
parameters. For example, for the statements above, we will be using two
predicates: Man and Mortal. The predicate Man is the predicate that denotes
the quality of being a man: Man(x) is true iff x is a man. The predicate Mortal
is true when its argument is mortal. As the predicates above have only one
argument/parameter, they are called unary predicates. Predicates generalize
propositional variables by the fact that they can take arguments. Actually,
propositional variable can be regarded as predicates with no arguments.

In this way, the statement All men are mortal will be modelled by the
formula (

∀x.(Man(x)→ Mortal(x))
)
,

which is read as follows: for any x, if Man of x, then Mortal of x. The
statement Socrate is a men shall be modelled by the formula Man(s), where
s is a constant that denotes Socrates, just like 0 denotes the natural number
zero. For example, Man(s) is true (as s stands for a particular man – Socrates),
but Man(l) is false if l is a constant standing for the dog Lassie.

The statement Socrates is mortal shall be represented by Mortal(s) (recall
that the constant s stands for Socrates). The statement Mortal(s) is true, as
Socrates is mortal; likewise, the statement Mortal(l) is also true.

We shall see that in first-order logic, the formula Mortal(s) is a logical con-
sequence of the formulae

(
∀x.(Man(x)→ Mortal(x))

)
and respectively Man(s).

Therefore, first-order logic is sufficiently expressive to explain theoretically the
argument by which we deduce that Socrates is mortal from the facts that All
men are mortal and Socrates is a man.
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Chapter 2

Structures and signatures

You have certainly met already several first-order logic formulae, without
necessarily knowing that you are dealing with first-order logic. Consider the
following formula:

ϕ =
(
∀x.
(
∀y.(x < y→∃z.(x < z ∧ z < y))

))
.

The formula makes use of a binary predicate, <, that is defined as follows:
< (x, y) is true if x is strictly smaller than y. In order to simplify our writing,
we use the infixed notation (x < y) instead of the prefixed notation (< (x, y))
for many binary predicates (including for <).

Is the formula ϕ above true? The formula states that between any two
values of the variables x, y there is a third value, of the variable z. The formula
is true if the domain of the variables x, y, z is R, but it is false if the domain
is N (between any two real numbers there exists a third, but between two
consecutive naturals there is no other natural number).

Generally, first-order formulas refer to a particular mathematical structure.

Definition 1 (Mathematical structure). A mathematical structure is a tuple
S = (D,Pred ,Fun) where:

• D is a non-empty set called the domain of the structure;

• each P ∈ Pred is a predicate (of a certain arity) over the set D;

• each f ∈ Pred is a function (of a certain arity) over the set D.

Here are a few examples of mathematical structures:

1. (N, {<,=}, {+, 0, 1});
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The domain of the structure is the set of naturals. The structure con-
tains two predicates: < and =, both of arity 2. The predicate < is the
smaller than predicate on naturals, and the predicate = is the equality
predicate over natural numbers.

The structure also contains three functions. The binary function + :
N2 → N is the addition function for naturals, and the functions 0 :
N0 → N and respectively 1 : N0 → N are the arity 0 functions (also
called constant functions or simply constants) 0 and respectively 1.

2. (R, {<,=}, {+,−, 0, 1});
This structure contains two binary predicates, < and =, as well as four
functions over R: the binary function +, the unary function − (unary
minus) and the constants 0, 1 ∈ R.

3. (Z, {<,=}, {+,−, 0, 1});
This structure is similar to that above, but the domain is the set of
integers.

4. (B, ∅, {·,+, });
This structure is a boolean algebra, where the domain is the set truth
values and the functions are those that we studied in the first half of the
semester. Such structures, without any predicates, are called algebraic
structures.

5. (R, {<}, ∅).
This structure contains only a predicate of arity 2 (the less than relation
over R) and no function. Structures without functions are called rela-
tional structures. Relational structures with a finite domain are called
relational data bases and you will study them in your second year.

Whenever we want to evaluate the truth value of a first-order formula we
need a mathematical structure. Recall our previous formula:

ϕ =
(
∀x.
(
∀y.(x < y→∃z.(x < z ∧ z < y))

))
.

This formula is true in the structure (R, {<,=}, {+,−, 0, 1}) (between any
two distinct real numbers there is another real number), but it is false in the
structure (Z, {<,=}, {+,−, 0, 1}) (because it is not true that between any two
distinct integers there is a third integer – for example there is no such integer
between two consecutive integers).

It is possible for two different structure to have a set of predicates and
a set of functions with the same names. For example, the structures above,
(R, {<,=}, {+,−, 0, 1}) and respectively (Z, {<,=}, {+,−, 0, 1}). Even if the
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predicate <∈ R2 is different from the predicate <∈ Z2, they both have the
same name: <.

Generally, in Mathematics and in Computer Science, we do not make any
difference between a predicate and its name or between a function and its
name. However, in Logic, the difference is extremely important. In particu-
lar, if we refer to the name of a function, we shall use the phrase “functional
symbol” (i.e., symbol standing for a function). When we refer to the name
of a predicate, we shall use the phrase “predicate symbol” (or “relational
symbol”). Why is the difference between a predicate and a predicate symbol
important? Because we shall need to associate to the same predicate sym-
bol several predicates, similarly to how we can associate several values to a
program variable in an imperative language.

When we are interested only in the function and predicate names (not the
function or predicates themselves), we work with signatures:

Definition 2 (Signature). A signature Σ is a tuple Σ = (P,F), where P is a
set of predicate symbols and F is a set of functional symbols. Each predicate
or functional symbol s has an associate natural number called its arity denoted
by ar(s).

To a signature we can associate many structures:

Definition 3 (Σ-structure). If Σ = (P,F) is a signature, a Σ-structure is
any structure S = (D,Pred ,Fun) so that for each predicate symbol P ∈ P,
exists a predicate PS ∈ Pred of corresponding arity, and for every functional
symbol f ∈ F , there is a function fS ∈ Fun of corresponding arity.

Example 4. Let Σ = ({P, Q}, {f, i, a, b}), where P and Q are predicate sym-
bols of arity ar(P) = ar(Q) = 2 and f, i, a, b are function symbols having the
following arrities: ar(f) = 2, ar(i) = 1 and ar(a) = ar(b) = 0.

We have that (R, {<,=}, {+,−, 0, 1}) and (Z, {<,=}, {+,−, 0, 1}) are Σ-
structures.

Remark. As you can observe in Example 4, for predicate symbols (e.g., P, Q)
we use a different color than the color used for functional symbols (e.g., f, i, a,
b). For oredicates and and functions we use the normal font for mathematical
formulas.

To remember!
Structure = domain + predicates + functions
Signature = predicate symbols + functional symbols
To a signature Σ we can associate many structures, which are called

Σ-structures.
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Notation. The set of predicate symbols of arity n is denoted by Pn = {P |
ar(P ) = n}, and the set of functional symbols of arity n is Fn = {f | ar(f) =
n}. For the particular case when n = 0, F0 is the set of constant symbols
(that is, functional symbols with arity 0).

Part II - First-Order Logic 10 Lecture notes - to print in color



Chapter 3

The Syntax of First-Order
Logic

In this chapter we present the syntax of first-order logic formula. The lan-
guage of first-order logic is parameterised by a signature. A difference to
propositional logic is that there are several first-order logic languages, one
first-order language for each signature Σ. In propositional logic, there was
just one language, PL.

Next, we shall fix a signature Σ that contains the predicate symbols in P
and the functional symbols in F .

3.1 The Alphabet of First-Order Logic

Just as propositional logic formulae, the formulae in first-order logic are strings
of characters over a certain alphabet. Unlike propositional logic, the alpha-
bet is now richer. The alphabet of first-order logic consists of the follows
“characters”:

1. the logical connectives already known: ¬,∧,∨,→,↔, ⊥, as well as two
new quantifiers: ∀, ∃;

2. variables: we will assume that a countably infinite set of variables
X = {x, y, z, x′, y′, x1, z′′, . . .} is also part of the alphabet (not to be
confused with propositional variables in propositional logic – they are
two fundamentally different notions);

3. auxilliary symbols: (, ), ., ,, (, ), and ,;

4. non-logical symbols, that are specific to each signature Σ = (P,F): the
functional symbols in F and the predicate symbols in P.
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3.2 Terms

Definition 5. The set of terms, T , is the smallest set having the following
properties:

1. F0 ⊆ T (any constant symbol is a term);

2. X ⊆ T (any variable is a term);

3. if f ∈ Fn (with n > 0) and t1, . . . , tn ∈ T , then f(t1, . . . ,tn) ∈ T (a
functional symbol of arity n applied to n terms is a term).

Remark. The elements of the set T are often called Σ-terms, because the
definition of T depends on Σ.

Terms are essentially built by applying functional symbols to variables and
constant symbols.

Example 6. Recall Σ = ({P, Q}, {f, i, a, b}) from Example 4, where ar(P) =
ar(Q) = 2, ar(f) = 2, ar(i) = 1, ar(a) = ar(b) = 0. Here are several ex-
ample of terms: a, b, x, y, x1, y′, i(a), i(x), i(i(a)), i(i(x)), f(a, b), i(f(a, b)),
f(f(x, a), f(y, y)).

Exercise 7. Identify the Σ-terms in the following list :

1. i(i(x));

2. i;

3. f(x, x);

4. P(a, b);

5. i(a, a);

6. f(i(x), i(x));

7. f(i(x, x));

8. a(i(x)).

We denote terms by the letters t, s, t1, t2, s1, t
′, etc. Even if terms are

usually written as a string of characters, they have an associated abstract
syntax tree defined as follows:

1. if t = c and c ∈ F0, then ast(t) = c ;

2. if t = x and x ∈ X , then ast(t) = x ;

Part II - First-Order Logic 12 Lecture notes - to print in color



Logic for Computer Science 2024-2025 Alexandru Ioan Cuza University

3. if t = f(t1, . . ., tn) and f ∈ Fn (n > 0), t1, . . . , tn ∈ T , then

ast(t) =

f

ast(t1) . . . ast(tn).

Remark. Even if formally terms are defined as strings of characters over
the alphabet described above, these must be understood as being trees. In any
software program that handles terms, these are stored as a rooted tree. Here
is the tree associated to the term f(f(a, i(b)), x):

ast
(
f(f(a, i(b)), x)

)
=

f

f

a i

b

x .

Exercise 8. Compute the abstract syntax trees for all terms in Example 6.

3.3 Atomic formulae

Definition 9 (Atomic formula). An atomic formula is any string of charac-
ters of the form P (t1, . . . ,tn), unde P ∈ Pn , where P ∈ Pn is a predicate
symbol of arity n, and t1, . . . , tn ∈ T are terms.

Example 10. Continuing the previous example, we work over the signature

Σ = ({P, Q}, {f, i, a, b}),

where ar(P) = ar(Q) = 2, ar(f) = 2, ar(i) = 1, ar(a) = ar(b) = 0.

Here are a few examples of atomic formulae: P(a,b), P(x, y), Q
(
i(i(x)), f(x, x)

)
,

Q(a, b), P
(
f
(
f(a, i(x)), b

)
, i(x)

)
.

Exercise 11. Explain why P(a), P, i(i(x)) are not atomic formulae over the
signature in Example 10.

3.4 First-Order Formulae

Definition 12 (First-Order Formula). The set of first-order formulae, written
FOL, is the smallest set with the following properites:
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1. (base case) any atomic formula is a formula (that is P (t1, . . ., tn) ∈ FOL
for any predicate symbol P ∈ Pn and any terms t1, . . . , tn; if n = 0, we
write P instead of P ());

2. (inductive cases) for any formulae ϕ,ϕ1, ϕ2 ∈ FOL, for any variable
x ∈ X , we have:

(a) ¬ϕ1 ∈ FOL;

(b) (ϕ1 ∧ ϕ2) ∈ FOL;

(c) (ϕ1 ∨ ϕ2) ∈ FOL;

(d) (ϕ1 →ϕ2) ∈ FOL;

(e) (ϕ1 ↔ ϕ2) ∈ FOL;

(f) (∀x.ϕ) ∈ FOL;

(g) (∃x.ϕ) ∈ FOL.

Remark. In Definition 12, we find the logical connectives ¬,∧,∨,→ and
↔ from propositional logic. The predicate symbols of arity 0 play the role
of propositional variables (for now, at the syntactic level). The constructions
(∀x.ϕ) and ∃x.ϕ) are new.

Example 13. Recall Σ = ({P, Q}, {f, i, a, b}) from Example 6, where ar(P) =
ar(Q) = 2, ar(f) = 2, ar(i) = 1 s, i ar(a) = ar(b) = 0.

Here are several example of first-order formulae:

1. P(a,b);

2. Q(a,b);

3. P(a,x);

4. ¬P(a,b);

5. (P(a, b) ∧ ¬Q(a, b));

6. (P(a, b) ∨ ¬Q(x, y));

7. (P(a, b) → P(a, b));

8. ((P(a, b) → P(a, b)) ↔ (P(a, b) → P(a, b)));

9.
(
∀x.P(a, x)

)
;

10.
(
∃x.¬Q(x, y)

)
.

Definition 14 (The Abstract Syntax Tree of formulae in FOL). Formulae
have an associated abstract syntax tree defined as follows:
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1. if ϕ = P (t1, . . ., tn), then ast(ϕ) =

P

ast(t1) . . . ast(tn);

2. if ϕ = ¬ϕ1, then ast(ϕ) =

¬

ast(ϕ1);

3. if ϕ = (ϕ1 ∧ ϕ2), then ast(ϕ) =

∧

ast(ϕ1) ast(ϕ2);

4. if ϕ = (ϕ1 ∨ ϕ2), then ast(ϕ) =

∨

ast(ϕ1) ast(ϕ2);

5. if ϕ = (ϕ1 →ϕ2), then ast(ϕ) =

→

ast(ϕ1) ast(ϕ2);

6. if ϕ = (ϕ1 ↔ ϕ2), then ast(ϕ) =

↔

ast(ϕ1) ast(ϕ2);

7. if ϕ = (∀x.ϕ1), then ast(ϕ) =

∀x

ast(ϕ1);
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8. if ϕ = (∃x.ϕ1), then ast(ϕ) =

∃x

ast(ϕ1).

Exercise 15. Compute the abstract syntax tree of formulas shown in Exam-
ple 13.

3.5 The Brackets

The brackets ( and ) are used to mark the order of carrying out the logical
operations (and, or, not, etc.). Next, we will drop certain extra brackets, just
like in the case of propositional logic: if a formula can be interpreted as an
abstract syntax in two or more ways, we will use brackets to fix the desired
tree.

For example, ϕ1∨ϕ2∧ϕ3 could be understood as ((ϕ1 ∨ ϕ2) ∧ ϕ3) or as
(ϕ1 ∨ (ϕ2 ∧ ϕ3)). In order to save brackets, we establish the following prior-
ity order of logical connectives:

¬,∧,∨,→,↔,∀,∃,

where ¬ has the highest priority and ∃ has the lowest priority. When we are
not 100% sure, it is better to use extra brackets.

Because of the order of priority for logical connectives, ϕ1∨ϕ2∧ϕ3 shall
always be understood as (ϕ1 ∨ (ϕ2 ∧ ϕ3)) (because ∧ has priority over ∨).
As an anology, it works the same way as in arithmetic: 1 + 2 ∗ 3 will be
understood as 1 + (2 × 3), because × has priority over + (× is similar to ∧
and + to ∨).

Exercise 16. Write the formulas in Example 13 using the minimal number
of brackets.

In Section 3.12 we will discuss more about the interaction between the
cuantifiers and the other logical connectives. We will see that we have some
extra rules besides the above priorities.

3.6 Model english sentences as formulas in FOL
Next, we will explain the signature used to model in first-order logic the
statments All men are mortal, Socrates is a man and respectively Socrates is
mortal.
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First, we identify the predicates in the text. We have two unary predicates
is a man and respectively is mortal. We choose the predicate symbol H for the
first predicate and the predicate symbol M for the second predicate. We also
have one constant in the text: Socrates. We choose the functional symbol s
(of arity 0) for this constant. Therefore, to model the statements above, we
shall work in the signature

Σ = ({H, M}, {s}),

where H and M are predicate symbols of arity ar(H) = ar(M) = 1, and s is a
functional symbol of arity ar(s) = 0.

The statement All men are mortal will be modelled by the first-order
formula

(∀x.(H(x)→ M(x))),

whose abstract syntax tree is:

ast
((

∀x.(H(x)→ M(x))
))

=

∀x

→

H

x

M

x .

The statement Scorates is a man shall be modelled by the atomic formula
H(s), and the statement Socrates is mortal by the atomic formula M(s).

For the signature Σ = ({H, M}, {s}) fixed above, there exist several possible
Σ-structures. An example of a Σ-structure would be S = (D, {HS , MS}, {sS})
defined as follows:

1. D is the set of all beings on Earth;

2. HS(x) is true for any being x that is a man;

3. MS(x) is true of any being x (all of the elements in the domain are
mortal);

4. sS is Socrates (Socrates, being a being, belongs to the set D).
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Anticipanting a little bit (we shall discuss the semantics of first-order
formulae in the next lecture), all tree formulae discussed in this section,
(∀x.(H(x)→ M(x))), H(s) and respectively M(s), are true in the structure S
defined above.

In fact, the quality of the argument All men are mortal; Socrates is a
man; so: Socrates is mortal is given by the fact that the formula M(s) is
necessarily true in any structure in which the formulae (∀x.(H(x)→ M(x)))
and respectively H(s) are true, not just in the structure S above.

3.7 Model arithmetic sentences as formulas in
FOL

Consider the signature Σ = ({<,=}, {+,−, 0, 1}), where < and = are pred-
icate symbols of arity 2, + is a functional symbol of arity 2, − is a functional
symbol of arity 1, and 0 and 1 are constant symbols.

Here are a few first-order formulae in the first-order language associated
to the signature Σ:

1.
(
∀x.
(
∀y.(<(x, y)→∃z.(<(x, z) ∧ <(z, y)))

))
;

2.
(
∀x.
(
∀y.
(
∃z.(=(+(x, y), z))

)))
;

3.
(
∀x.(<(0, x) ∨ =(0, x))

)
;

4.
(
∀x.
(
∃y.(=(x,−(y)))

))
;

5. =(+(x, y), z).

Many times, in the case of binary predicate symbols and binary functional
symbols, we use the infixed notation (e.g., x<y instead of <(x, y)). In this
case, we could write the formulae above as follows:

1.
(
∀x.
(
∀y.
(
x < y→∃z.(x < z ∧ z < y)

)))
;

2.
(
∀x.
(
∀y.(∃z.(x + y = z))

))
;

3.
(
∀x.(0 < x ∨ 0 = x)

)
;

4.
(
∀x.
(
∃y.(x = −(y))

))
;

5. x + y = z.
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Two of the possible Σ-structures are S1 = (R, {<,=}, {+,−, 0, 1}) and
S2 = (Z, {<,=}, {+,−, 0, 1}), where the predicates and functions are those
known from mathematics (with the remark that − is the unary minus func-
tion).

Anticipanding the next lecture, on the semantics of first-order formulae,
the first formula is false in S2 and true in S1. The second and the fourth
formula are true both in S1 and in S2. The third formulae is false both in
S1 and in S2. The truth value of the fifth formula depends not only of the
structure where we evalute the truth value of the formula, but also on the
values of the variables x, y, z. Because the variables x, y, z are not protected
by a quantifier in formula number 5, they are called free variables. Formula
number 5 is satisfiable both in the structure S1 as well as in the structure S2,
because in both cases there are values for the variables x, y, z that make the
formula true (e.g. the values 1, 2, 3 for x, y, and respectively z).

3.8 The Variables of a Formula

By vars(ϕ) we denote the variables of the formula ϕ. For example, we shall
have vars

(
(∀z.(P(x, y)))

)
= {x, y, z}. We next define the function vars :

FOL→ 2X .
First of all, we define a function vars : T → 2X as being the function that

associates to a term (from the set T ) the set of variables occurring in that
term. All following definitions are defined inductively, as the corresponding
syntactic definitions are. We call them recursive definitions and we do not
explicitly differentiate the base case and the inductive cases. We recall that
the set 2X is the set of all subsets of X .

Definition 17. The function vars : T → 2X is defined recursively as follows:

1. vars(c) = ∅ (if c ∈ F0 is a constant symbol);

2. vars(x) = {x} (if x ∈ X is a variable);

3. vars(f(t1, . . . ,tn)) =
⋃
i∈{1,...,n} vars(ti).

We can now define the homonymous (extended) function vars : FOL →
2X , which associates to any first-order formula the set of variables of the
formula:

Definition 18. The function vars : FOL → 2X is define recursively as fol-
lows:

1. vars(P (t1, . . . ,tn)) =
⋃
i∈{1,...,n} vars(ti);
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2. vars(¬ϕ) = vars(ϕ);

3. vars((ϕ1 ∧ ϕ2)) = vars(ϕ1) ∪ vars(ϕ2);

4. vars((ϕ1 ∨ ϕ2)) = vars(ϕ1) ∪ vars(ϕ2);

5. vars((ϕ1 → ϕ2)) = vars(ϕ1) ∪ vars(ϕ2);

6. vars((ϕ1 ↔ ϕ2)) = vars(ϕ1) ∪ vars(ϕ2);

7. vars
(
(∃x.ϕ)

)
= vars(ϕ) ∪ {x};

8. vars
(
(∀x.ϕ)

)
= vars(ϕ) ∪ {x}.

Observe that the variable x is added to the set of variables even if it
appears only as next to the quantifier ∃ or ∀.

Example 19. Consider the formula ϕ:((
∀x.
(
P(x, y) ∧ ∃y.

(
P(z, f(x, y)) ∧ P(x, y)

)))
∧ P(x, x)

)
.

We have that vars(ϕ) = {x, y, z}.

Exercise 20. Consider Σ = ({P, Q}, {f, i, a, b}), wher ar(P) = ar(Q) = 2,
ar(f) = 2, ar(i) = 1, ar(a) = ar(b) = 0. Compute vars(ϕ) for each formula ϕ
in the list below:

1. P(x,y);

2. Q(a,b);

3. P(a,x);

4. ¬P(x,z);

5. (P(x, x) ∧ ¬Q(x, z));

6. (P(x, b) ∨ ¬Q(z, y));

7. ((P(x, b) → P(x, z)) ↔ (P(x, b) → P(a, z)));

8.
(
∀x.P(a, x)

)
;

9.
(
∃x.¬Q(x, y)

)
;

10.
((

∃x.¬Q(x, y)
)
∧
(
∀y.P(y, x)

))
.
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3.9 The Scope of a Quantifier - Analogy with
Programming Languages

In a programming language, we may declare several variables having the same
name. For example, in C, we could have the following code:

/* 1:*/ int f()

/* 2:*/ {

/* 3:*/ int s = 0;

/* 4:*/ for (int x = 1; x <= 10; ++x) {

/* 5:*/ for (int y = 1; y <= 10; ++y) {

/* 6:*/ s += x * y * z;

/* 7:*/ for (int x = 1; x <= 10; ++x) {

/* 8:*/ s += x * y * z;

/* 9:*/ }

/* 10:*/ }

/* 11:*/ }

/* 12:*/ return s;

/* 13:*/ }

In the code fragment above, there are three variables, two of them having
the same name, x. The scope of the variable x declared on line 4 is between
the lines 4− 11, and the scope of the variable x declared on line 7 is the lines
7 − 9. This way, any occurence of the name x between lines 7 − 9 refers to
the second declaration of the variable, while any occurrence of the name x

between lines 4− 11 (except lines 7− 9) refers to the second declaration of x.
For example, the occurrence of x on line 6 refers to the variable x declared on
line 4. The occurrence of x on line 8 refers to the variable x declared on line
7.

The lines 4 − 11 represent the scope of the first declaration of x, and the
lines 7− 9 represent the scope of the second declaration of x. The variable z
is a global variable.

This is similar to first-order formulae. For example, in the formula:(
∀x.
(
∀y.(P(x, y) ∧ P(x, z) ∧ (∃x.P(x, y)))

))
,

the variable x is quantified twice (the first time universally, the second time
existentially). A quantification of a variable is called binding. A binding is
similar, from the point of view of the scope of the variable, to defining a
variable in a programming language.

This way, the scope D1 of the variable x that is quantified universally is(
∀y.(P(x, y) ∧ P(x, z) ∧ (∃x.P(x, y)))

)
, while the scope D2 of the variable x

that is quantified existentially is P(x, y):
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(
∀x.

(
∀y.(P(x, y) ∧ P(x, z) ∧ (∃x.

D2︷ ︸︸ ︷
P(x, y)))

)︸ ︷︷ ︸
D1

)

The occurrences of a variable in the scope of a quantifier that binds the
variable are called bound occurrences, while the occurrences of a variable out-
side of the scope of any quantifier that binds the variable are called free
occurrences.

3.10 Free and Bound Occurrences of Variables

In this section we formally define the notion of free/bound occurrence and of
free/bound variable. The free occurrences of a variable in first-order logic are,
as an analogy, similar to global variables in a programming language.

Recall the definition of the syntax abstract tree associated to a first order
formula and consider that the sentence ”on the path to the root” has a formal
definition.

Definition 21. A free occurrence of a variable x in a formula ϕ is a node in
the tree of the formula ϕ labeled by x and having the property that there is no
node labeled ∀x or ∃x on the path to the root.

Definition 22. A bound occurrence of a variable x in a formula ϕ is a node
in the tree of the formula labeled by x and having the property that, on the
path towards the root, there is at least a node labeled by ∀x or by ∃x.

The closest such node (labeled by ∀x or by ∃x) is the quantifier that binds
that particular occurrence of the variable x.

Example 23. We next consider the formula

ϕ =

((
∀x.
(
P(x, y) ∧ ∃y.

(
P(z, f(x, y)) ∧ P(x, y)

)))
∧ P(x, x)

)
.

Its abstract syntax tree is:
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ast(ϕ) =

∧

∀x

∧

P

x y

∃y

∧

P

z f

x y

P

x y

P

x x .

In the formula ϕ above, the variable x has two free occurrences. The
variable y has one free occurrence. The variable z has one free occurrence.
All the free occurrences of the variables in the formula ϕ are underlined:

ϕ =

((
∀x.
(
P(x, y) ∧ ∃y.

(
P(z, f(x, y)) ∧ P(x, y)

)))
∧ P(x, x)

)
.

All the bound occurrences of the variables in the formula ϕ are underlined
twice:

ϕ =

((
∀x.
(
P(x, y) ∧ ∃y.

(
P(z, f(x, y)) ∧ P(x, y)

)))
∧ P(x, x)

)
.

Remark. Some authors also consider that the nodes labeled by ∀x or by ∃x
are bound occurrences of the variable x. In this course, we shall not consider
the nodes ∀x and respectively ∃x as being occurrences of the variable x, but
simply as binding sites for the variable x.
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3.11 Free Variables and Bound Variables

The set of variables that have at least one free occurrence in a formula ϕ is
denoted free(ϕ).

Definition 24. The function free : FOL → 2X is defined recursively as fol-
lows:

1. free(P (t1, . . . ,tn)) = vars(t1) ∪ . . . ∪ vars(tn);

2. free(¬ϕ) = free(ϕ);

3. free((ϕ1 ∧ ϕ2)) = free(ϕ1) ∪ free(ϕ2);

4. free((ϕ1 ∨ ϕ2)) = free(ϕ1) ∪ free(ϕ2);

5. free((ϕ1 → ϕ2)) = free(ϕ1) ∪ free(ϕ2);

6. free((ϕ1 ↔ ϕ2)) = free(ϕ1) ∪ free(ϕ2);

7. free
(
(∀x.ϕ)

)
= free(ϕ) \ {x};

8. free
(
(∃x.ϕ)

)
= free(ϕ) \ {x}.

Example 25. Continuing the previous example, for the formula

ϕ =

((
∀x.
(
P(x, y) ∧ ∃y.

(
P(z, f(x, y)) ∧ P(x, y)

)))
∧ P(x, x)

)
,

we have that free(ϕ) = {x, y, z}.

Exercise 26. Compute vars(ϕ) for each formula ϕ in Exercise 20.

By bound(ϕ) we denote the set of variables bound in a formula, that is the
set of those variables x with the property that there exists in the formula at
least one node labeled by ∀x or by ∃x.

Definition 27. The function bound : FOL → 2X is defined recursively as
follows:

1. bound(P (t1, . . . ,tn)) = ∅;

2. bound(¬ϕ) = bound(ϕ);

3. bound((ϕ1 ∧ ϕ2)) = bound(ϕ1) ∪ bound(ϕ2);

4. bound((ϕ1 ∨ ϕ2)) = bound(ϕ1) ∪ bound(ϕ2);
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5. bound((ϕ1 → ϕ2)) = bound(ϕ1) ∪ bound(ϕ2);

6. bound((ϕ1 ↔ ϕ2)) = bound(ϕ1) ∪ bound(ϕ2);

7. bound
(
(∀x.ϕ)

)
= bound(ϕ) ∪ {x};

8. bound
(
(∃x.ϕ)

)
= bound(ϕ) ∪ {x}.

Exercise 28. Compute bound(ϕ) for each formula ϕ in Exercise 20.

Exercise 29. Compute bound(ϕ), where

ϕ =

((
∀x.
(
P(x, y) ∧ ∃y.

(
P(z, f(x, y)) ∧ P(x, y)

)))
∧ P(x, x)

)
.

Definition 30 (Bound Variables of a Formula). The bound variables of a
formula ϕ are the elements of bound(ϕ).

Definition 31 (Free Variables of a Formula). The free variables of a formula
ϕ are the elements of the set free(ϕ).

Remark. The sets free(ϕ) and bound(ϕ) could in general have common ele-
ments.

Remark. A variable can have several occurrences in a formula. Some of the
occurrences could be free in the formula, while others could be bound.

We must make the distinction between a free occurrence of a variable in
a formula and a free variable of a formula. The free occurrence is a node in
the abstract syntax tree of the formula, while the free variable is an element
of the set X .

We must also make the distinction between a bound occurrence of a vari-
able in a formula and a bound variable of a formula. The bound occurrence
is a node in the abstract syntax tree, while the bound variable is an element
of the set X .

3.12 The Scope of a Bound Variable and Brack-
ets

Now that we have understood the scope of a bound variable, we may clarify
a subtlety related to the order of priority of logical connectives. Up to this
point, we have established that the order of priority is: ¬,∧,∨,→,↔,∀,∃.
However, the quantifiers, ∀ and ∃, interact subtly with the other logical con-
nectives, making parathesizing a formula more complicated.
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Clarification: a formula should be paranthesized such that the scope of a
bound variable extends as far to the right as possible.

For example, the formula:

∀x.P(x, x) ∨ ¬∃y.P(x, y) ∧ P(x, x)

should be paranthesized as follows:(
∀x.
(
P(x, x) ∨ (¬(∃y.(P(x, y) ∧ P(x, x))))

))
.

3.13 Exercises

Exercise 32. Identify a signature for the following statements and model the
statements as formulae in first-order logic over that signature.

John is a student. Any student learns Logic. Anyone learning Logic
passes the exam. Any student is a person. There is a person who did not pass
the exam. Therefore: not all persons are students.

Exercise 33. Consider S = (R, {Nat, Int,Prime,Even, >}, {+, 0, 1, 2}), a
structure where Nat, Int, Prime, Even are unary predicates with the follow-
ing meaning: Nat(u) = “u is a natural number, Int(u) = “u is an integer
number”, Prime(u) = “u is a prime” and Even(u) = “u is an even number”.
The binary predicate > is the “greater than” relation over real numbers. The
function + is the addition function for real numbers. The constants 0, 1, 2 are
what you would expect.

1. Find a signature Σ so that the structure S is a Σ structure;

2. Model the following statements as first-order formulae in the signature
associated to the structure S above:

(a) Any natural number is also an integer.

(b) The sum of any two natural numbers is a natural number.

(c) No matter how we would choose a natural number, there is prime
number that is greater than the number we chose.

(d) If any natural number is a prime number, then zero is a prime
number.

(e) No matter how we choose a prime number, there is a prime number
greater than it.

(f) The sum of two even numbers is an even number.

(g) Any prime number greater than 2 is odd.
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(h) Any prime number can be written as the sum of four prime num-
bers.

(i) The sum of two even numbers is an odd number.

(j) Any even number is the sum of two primes.

Exercise 34. Give examples of 5 terms over the signature in Exercise 33 (1.)
and compute their abstract syntax tree.

Exercise 35. Give examples of 5 formulas over the signature in ExerciseEx-
ercise 33 (1.) and compute their abstract syntax tree.

Exercise 36. Compute the abstract syntax tree of the following formulae
(hint: place brackets around subformulae, in the priority order of the logical
connectives):

1. P(x) ∨ P(y) ∧ ¬P(z);

2. ¬¬P(x) ∨ P(y)→ P(x) ∧ ¬P(z);

3. ∀x.∀y.¬¬P(x) ∨ P(y)→ P(x) ∧ ¬P(z);

4. ∀x.∀y.¬¬P(x) ∨ P(y)→∃x.P(x) ∧ ¬P(x);

5. ∀x′.¬∀x.P(x) ∧ ∃y.Q(x, y) ∨ ¬Q(z, z)→∃z′.P(z′).

Exercise 37. Mark the free occurrences and respectively the bound occur-
rences of the variables in the formulae below:

1. ϕ1 = (∀x.P(x, x) ∧ P(x, y)) ∧ P(x, z);

2. ϕ2 = (∀x.P(f(x, x), i(x)) ∧ ∃y.(P(x, y) ∧ P(x, z))).

Exercise 38. Identify the scope of the quantifiers in the formulae ϕ1 and ϕ2

from Exercise 37.

Exercise 39. Compute the variables, the free variables and respectively the
bound variables in the formulae ϕ1 and ϕ2 from Exercise 37.

Exercise 40. Let A = {p, q, r, . . .} be the set of propositional variables. We
consider the signature ΣPL = (A, ∅), where the propositional variables in A
are predicate symbols of arity 0.

1. Prove that for any formula ϕ ∈ PL we have ϕ ∈ FOL (over signature
ΣPL).

2. Prove that for any cuantifier free formula ϕ ∈ FOL over ΣPL, we have
ϕ ∈ PL.
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Chapter 4

The Semantics of
First-Order Formulae

The syntax of first-order logic tells us what are, from a syntactic point of
view, the formulae of first-order logic. On the other hand, the semantics of
the logic refers to the meaning of formulas. The semantics of a formula (or
its meaning) shall be a truth value. In general, just as for propositional logic,
the truth value of a formula depends not only on the formula itself, but also
on the mathematical structure over which the formula is evaluated.

We recall that a signature Σ = (P,F) is a pair consisting of predicate sym-
bols P and functional symbols F , each symbol having an associated natural
number called its arity.

In this chapter, we work over the signature Σ = ({P}, {f, i, e}), where P is a
predicate symbol of arity 2, and f, i and e are functional symbols of arity 2, 1
and respectively 0. Therefore, P2 = {P},P1 = ∅,P0 = ∅,F2 = {f},F1 = {i},
and F0 = {e}.

We recall that, if Σ = (P,F) is a signature, a Σ-structure is a tuple
S = (D,Pred ,Fun), where:

• D is a non-empty set called the domain of the structure;

• for each each predicate symbol P ∈ P there is a predicate PS ∈ Pred
having the same arity as P ;

• for each predicate symbol f ∈ F there is a predicate fS ∈ Pred is a
function having the same arity as f .

Example 41. We show several examples of Σ-structures below:

1. S1 = (Z, {=}, {+,−, 0});
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2. S2 = (R∗, {=}, {×, ·−1, 1});

3. S3 = (N, {=}, {+, s, 0});

4. S4 = (N, {<}, {+, s, 0}).

5. S5 = (Z, {<}, {+,−, 0}).

The structure S1 has the domain Z (the set of integers), the predicate
associated to the predicate symbol P is = (the equality predicate for integers),
the function + is the addition function for integers associated to the functional
symbol f, − is the unary minus function associated to the functional symbol
i, and the constant symbol e has 0 as the associated constant.

The structure S2 has the domain R∗ (the set of positive reals), the predicate
associated to the predicate symbol P is = (the equality predicate over positive
reals), the function × is the multiplication function over positive reals asso-
ciated to the functional symbol f, ·−1 is the unary function associated to the
functional symbol i that computes the inverse of a positive real number (e.g.

5−1 =
1

5
, and

1

10

−1
= 10), and the constant 1 is associated to the constant

symbol e.

The structure S3 has the domain N (the set of naturals), the predicate
associated to the predicate symbol P is = (the equality predicate for natural
numbers), the function + is the addition function for naturals associated to
the functional symbol f, s is the successor function (which associates to a
natural number the next natural number – e.g., s(7) = 8) associated to the
functional symbol i, and the constant 0 is associated to the constant symbol e.

The structure S4 has the domain N (the set of naturals), the predicate
associated to the symbol P is < (the smaller than relation over naturals), the
function + is the addition function for naturals associated to the functional
symbol f, s is the successor function associated to the functional symbol i, and
the constant 0 is associated to the constant symbol e.

The structure S5 is similar to S1, but the predicate symbol P is associated
with the less than relation instead of equality.

Using the notation above, we have that PS4 = <, fS2 = ×, and eS1 = 0.

4.1 Assignments

As in the propositional logic, in order to obtain the truth value of a formula
in a structure, we have to start by fixing some concrete values to the syntactic
symbols over which the formula is built. In the case of first order logic, we
start with the variables.
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Definition 42 (Assignment). Let Σ be a signature and let S be Σ-structure
with the domain D.

An S-assignment is any function

α : X → D.

Example 43. Consider the S1-assignment α1 : X → Z defined as follows:

1. α1(x1) = 5;

2. α1(x2) = 5;

3. α1(x3) = 6;

4. α1(x) = 0 for all x ∈ X \ {x1, x2, x3}.

Example 44. Consider the S1-assignment α2 : X → Z defined as follows:

1. α2(x1) = 6;

2. α2(x2) = 5;

3. α2(x3) = 6;

4. α2(x) = 0 for all x ∈ X \ {x1, x2, x3}.

Remark. Pay attention! Do not mistake the notation of assignment in First-
Order Logic with the notion of truth assignment in Propositional Logic.

In the presence of an assignment α we can compute the value of a term in
the assignment α. For this, we use an extension of α, denoted α,

α : T → D,

which is defined below.

Definition 45 (The Value of a Term in an Assignment). Given an S-assignment
α and a term t ∈ T over the signature Σ, the value of the term t in the as-
signment α is an element of the domain D, denoted by α(t), and computed
recursively as follows:

1. α(c) = cS if c ∈ F0 is a constant symbol;

2. α(x) = α(x) if x ∈ X is a variable;

3. α(f(t1, . . . ,tn)) = fS(α(t1), . . . , α(tn)) if f ∈ Fn is a function symbol of
arity n, and t1, . . . , tn are terms.
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Example 46. Continuing Example 43, where α1 is an S1-assignment, we
have that

α1(f(i(x1), e)) = α1(i(x1)) + α1(e)

= −(α1(x1)) + eS1

= −(α1(x1)) + 0

= −5 + 0

= −5.

Therefore, the value of the term f(i(x1), e) in the assignment α1 is −5.

Remark. The intuition is that assignments associate values in the domain
to the free variables in a formula.

At the point at which a variable is bound in a formula, the value of the
variable is shadowed by a new value in the scope of the cuantifier. This change
is formalized by the update operation for assignments, defined below.

Definition 47 (Updating an Assignment). Given an assignment α, a variable
x ∈ X and a value u ∈ D, we denote by α[x 7→ u] a new assignment, obtained
from α by updating the value of the variable x to u, formally defined as follows:

α[x 7→ u] : X → D, s.t.

1. (α[x 7→ u])(x) = u;

2. (α[x 7→ u])(y) = α(y), for any y ∈ X \ {x}.

Example 48. For example, the assignment α1[x1 7→ 6] is exactly the same
as the assignment α2 defined earlier. The value of the term f(i(x1), e) in the
assignment α1[x1 7→ 6] is α1[x1 7→ 6](f(i(x1), e)) = −6.

Exercise 49. Compute the values below:

1. α1[x1 7→ 10](f(i(x1), e));

2. α1[x2 7→ 10](f(i(x1), e));

3. α1[x2 7→ 10][x1 7→ 10](f(i(x1), e)).

4.2 The Truth Value of a First-Order Logic
Formula

Let Σ be a signature, let S be a Σ-structure and let α be an S-assignment.
Having fixed the elements above, we may compute the truth value of a first-
order formula constructed over the signature Σ.
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By writing S, α |= ϕ we denote the fact that the formula ϕ is true in the
structure S with the assignment α. By writing S, α 6|= ϕ we denote the fact
that the formula ϕ is not true (is false) in the structure S with the assignment
α.

The notation S, α |= ϕ can also be read as S satisfies ϕ with the assignment
α, and S, α 6|= ϕ can also be read as S does not satisfy ϕ with the assignment
α.

Definition 50. The fact that a structure S satisfies a formula ϕ with an
assignment α (or equivalently, that ϕ is true in the structure S with the as-
signment α) is defined inductively as follows:

1. S, α |= P (t1, . . . ,tn) iff PS(α(t1), . . . , α(tn));

2. S, α |= ¬ϕ iff S, α 6|= ϕ;

3. S, α |= (ϕ1 ∧ ϕ2) iff S, α |= ϕ1 and S, α |= ϕ2;

4. S, α |= (ϕ1 ∨ ϕ2) iff S, α |= ϕ1 or S, α |= ϕ2;

5. S, α |= (ϕ1 → ϕ2) iff S, α 6|= ϕ1 or S, α |= ϕ2;

6. S, α |= (ϕ1 ↔ ϕ2) iff (1) both S, α |= ϕ1 and S, α |= ϕ2, or (2) S, α 6|=
ϕ1 and S, α 6|= ϕ2;

7. S, α |= (∃x.ϕ) iff there is u ∈ D such that S, α[x 7→ u] |= ϕ;

8. S, α |= (∀x.ϕ) iff for all u ∈ D, such that S, α[x 7→ u] |= ϕ.

Example 51. We shall work over the signature Σ = ({P}, {f, i, e}), the Σ-
structure S1 = (Z, {=}, {+,−, 0}) and the S1-assignments α1, α2.

We have that

S1, α1 |= P(x1, x1) iff PS1(α1(x1), α1(x1))

iff α1(x1) = α1(x1)

iff α1(x1) = α1(x1)

iff 5 = 5.

As 5 = 5, we have that S1, α1 |= P(x1, x1), meaning that the formula
P(x1, x1) is true in the structure S1 with the assignment α1. Equivalently, we
say that S1 satisfies P(x1, x1) with the assignment α1.
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Example 52. Continuing the previous example, we have that

S1, α1 |= P(x1, x3) iff PS1(α1(x1), α1(x3))

iff α1(x1) = α1(x3)

iff α1(x1) = α1(x3)

iff 5 = 6.

As 5 6= 6, we have that S1, α1 6|= P(x1, x3), meaning that P(x1, x3) is false
in the structure S1 with the assignment α1. Equivalently, we say that S1 does
not satisfy P(x1, x3) with the assignment α1.

Example 53. Continuing the previous example, we have that

S1, α1 |= ¬P(x1, x3) iff S1, α1 6|= P(x1, x3)

iff it is not true that PS1(α1(x1), α1(x3))

iff it is not true that α1(x1) = α1(x3)

iff α1(x1) 6= α1(x3)

iff α1(x1) 6= α1(x3)

iff 5 6= 6.

As 5 6= 6, we have that S1, α1 |= ¬P(x1, x3), meaning that the formula
¬P(x1, x3) is true in the structure S1 with the assignment α1. Equivalently,
we say that S1 satisfies ¬P(x1, x3) with the assignment α1.

Example 54. Continuing the previous example, we have that

S1, α1 |= (P(x1, x1) ∧ ¬P(x1, x3)) iff

S1, α1 |= P(x1, x1) and S1, α1 |= ¬P(x1, x3) iff

. . . and . . . iff

5 = 5 and 5 6= 6.

As 5 = 5 s, i 5 6= 6, we have that S1, α1 |= P(x1, x1) ∧¬P(x1, x3).

Example 55. Continuing the previous example, we have that

S1, α1 |= P(x1, x3) ∨ P(x1, x1) iff S1, α1 |= P(x1, x3) or S1, α1 |= P(x1, x1).

We have already seen that S1, α1 |= P(x1, x3), so S1, α1 |= P(x1, x3) ∨ P(x1, x1)
(even if S1, α1 6|= P(x1, x1)).
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Example 56. Continuing the previous example, we have that

S1, α1 |= ∃x1.P(x1, x3) iff

exists u ∈ D s.t. S1, α1[x1 7→ u] |= P(x1, x3) iff

exists u ∈ D s.t. PS1(α1[x1 7→ u](x1), α1[x1 7→ u](x3)) iff

exists u ∈ D s.t. α1[x1 7→ u](x1) = α1[x1 7→ u](x3) iff

exists u ∈ D s.t. α1[x1 7→ u](x1) = α1[x1 7→ u](x3) iff

exists u ∈ D s.t. u = α1(x3) iff

exists u ∈ D s.t. u = 6.

Since there exists u (namely u = 6) so that u = 6, we have that S1, α1 |=
∃x1.P(x1, x3).

Example 57. Continuing the previous example, we have that

S1, α1 |= ∀x1.∃x3.P(x1, x3) iff

for all u ∈ D, we have S1, α1[x1 7→ u] |= ∃x3.P(x1, x3) iff

for all u ∈ D, there is v ∈ D s.t. S1, α1[x1 7→ u][x3 7→ v] |= P(x1, x3) iff

. . . iff

for all u ∈ D, there is v ∈ D s.t. u = v.

As for any integer u, there exists an integer v so that u = v, we have that
S1, α1 |= ∀x1.∃x3.P(x1, x3).

Exercise 58. Show that S1, α1 |= ∀x1.∃x3.P(x1, i(x3)).

4.3 Satisfiability in a Fixed Structure

Definition 59 (Satisfiability in a Fixed Structure). A formula ϕ is satisfiable
in a structure S if there exists an S-assignment α such that

S, α |= ϕ.

Example 60. The formula P(x1, x3) is satisfiable in the structure S1 because
there is an assignment, for instance α2, such that S1, α2 |= P(x1, x3).

Exercise 61. Show that ¬P(x1, x1) is not satisfiable in S1 (because, for each
assignment α, we have S1, α 6|= ¬P(x1, x1)).
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4.4 Validity in a Fixed Structure

Definition 62 (Validity in a Fixed Structure). A formula ϕ is valid in a
structure S if, for any S-assignment α, we have that

S, α |= ϕ.

Example 63. The formula P(x1, x3) is not valid in the structure S1, because
there exists an assignment, namely α1, having the property that S1, α1 6|=
P(x1, x3).

Exercise 64. Show that P(x1, x1) is valid in the structure S1 (because, for
any assignment α, S1, α |= P(x1, x1)).

4.5 Satisfiability

Definition 65 (Satisfiability). A formula ϕ is satisfiable if there exists a
structure S and an S-assignment α such that

S, α |= ϕ.

Example 66. The formula ¬P(x1, x1) is satisfiable, because there exists a
structure (namely S5) and an S5-assignment (namely α1) so that S5, α1 |=
¬P(x1, x1) (because 5 6< 5).

Remark. Because S5 and S1 have the same domain, the assignment α1 is
both an S1-assignment as well as an S5-assignment.

Remark. A formula could be unsatisfiable in a fixed structure (for example
¬P(x1, x1) is not satisfiable in the structure S1) but it could still be satisfiable
(for example ¬P(x1, x1), as we have seen above).

4.6 Validity

Definition 67 (Validity). A formula ϕ is valid if, for any structure S and
for any S-assignment α, we have that

S, α |= ϕ.

Example 68. The formula P(x1, x1) is not valid, because S5, α1 6|= P(x1, x1).
The formula P(x1, x1)→ P(x1, x1) is valid.

Remark. A formula could be valid in a fixed structure (for example P(x1, x1)
is valid in the structure S1) and still not be valid (for example, P(x1, x1) is
not valid because S5, α1 6|= P(x1, x1) ).
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4.7 Semantical Consequence

Definition 69. A formula ϕ is a semantical (or logical) consequence of the
formulae ϕ1, . . . , ϕn in a fixed structure S, denoted by ϕ1, . . . , ϕn |=S ϕ, if,
for any S-assignment α for which S, α |= ϕ1, S, α |= ϕ2, . . . , S, α |= ϕn, we
also have that S, α |= ϕ.

Example 70. We have P(x, y) |=S1 P(y, x), because, for any S1-assignment
α with the property that S1, α |= P(x, y) (meaning that α(x) = α(y)), we also
have S1, α |= P(y, x) (meaning α(y) = α(x)).

We have that P(x, y) 6|=S5
P(y, x), because, for the assignment α(x) = 5,

α(y) = 6, we have S5, α |= P(x, y) (that is, 5 < 6), bu S5, α 6|= P(y, x) (6 6< 5).

Definition 71. A formula ϕ is a semantical (or logical) consequence of the
formulae ϕ1, . . . , ϕn, denoted by ϕ1, . . . , ϕn |= ϕ, if

ϕ1, . . . , ϕn |=S ϕ

for any structure S.

Example 72. We have P(x, y) 6|= P(y, x), because there exists a structure
(namely S5) so that P(x, y) 6|=S5

P(y, x).

Exercise 73. Show that

∀x.∀y.∀z.(P(x, y) ∧ P(y, z)→ P(x, z)), P(x1, x2), P(x2, x3) |= P(x1, x3).

Of course, in the previous notations (as in the propositional logic), the list
ϕ1, ϕ2, . . . , ϕn denotes the set having as elements the enumerated formulae.

4.8 Consistent set of formulae

Definition 74. A set of formulae Γ is consistent in a fixed structure S if there
exists an S-assignment α with the property that S, α |= ϕ for each formula
ϕ ∈ Γ.

Example 75. We have that Γ = {P(x1, x2), P(x2, x1)} is consistent in S1: S1

makes both formulae true with the assignment α1.
The same set of formulae, Γ = {P(x1, x2), P(x2, x1)}, is not consistent in

S5: assuming by contradiction that there exists an assignment α with which
S5 makes both formulae in Γ true, we have α(x1) < α(x2) < α(x1), which is
impossible.

Definition 76. A set of formulae Γ is consistent if there exists a structure
S and an S-assignment α with the property that S, α |= ϕ for each formula
ϕ ∈ Γ.
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Example 77. We have that Γ = {P(x1, x2), P(x2, x1)} is consistent, because
it is consistent S1.

We have that Γ′ = {P(x1, x2),¬P(x1, x2)} is not consistent.

Exercise 78. Show that Γ′ is inconsistent.

4.9 Equivalent formulae

In some contexts, some formulae have the same meaning. For instance, the
formulae ∀x.P(x, x) and ∀y.P(y, y) have the same meaning in any context. An-
other example of formulae with the same meaning is ¬∀x.Q(x) and ∃x.¬Q(x).
We call these formulae equivalent.

Some formulae have the same meaning only for some interpretation of the
predicate and functional symbols. For instance, if we work in a structure
in which the predicate symbol P is interpreted as a symmetric predicate, the
formulae P(x, y) and P(y, x) have the same meaning. These formulae are called
equivalent in the structure S in which we work.

These aspects are formalized in the following definitions.

Definition 79. Two formulae ϕ1 ∈ FOL and ϕ2 ∈ FOL are equivalent in a
structure S if, for any S-assignment α,

S, α |= ϕ1 iff S, α |= ϕ2.

The fact that ϕ1 and ϕ2 are equivalent in the structure S is denoted ϕ1
S≡

ϕ2.

In other words, two formulae are equivalent in a given structure S if, after
evaluating the truth values of the formulae in the structure S, we obtain
the same result for both formulae (both are true or both are false), for any
assignment α in which we work.

Example 80. We continue the examples from previous lectures. Let us con-
sider the signature Σ = ({P}, {f, i, e}) and Σ-structure S1 = (Z, {=}, {+,−, 0}).

1. We have that P(x, y)
S1≡ P(y, x). Why?

Let α any S1-assignment.
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We have S1, α |= P(x, y) iff (by definition of |=)PS1(ᾱ(x), ᾱ(y))

iff ᾱ(x) = ᾱ(y)

iff α(x) = α(y)

iff (by the symmetry of equality) α(y) = α(y)

iff ᾱ(y) = ᾱ(x)

dff (by definition of the relation |=) S1, α |= P(y, x).

So, for any S1-assignment α, we have: S1, α |= P(x, y) iff S1, α |=
P(y, x), which is exactly the definition for P(x, y)

S1≡ P(y, x).

2. We have that P(x1, x3) 6
S1≡ P(x2, x3). Why?

Because there is an S1-assignment α : X → Z, defined by α(x1) =
42, α(x2) = 7, α(x3) = 42 and α(x) = 0, for all x ∈ X \ {x1, x2, x3} with
the property that

S1, α |= P(x1, x3) (because 42 = 42), but
S1, α 6|= P(x2, x3) (because 42 6= 7).

For the case where the structure is not fixed, we have the following defi-
nition:

Definition 81. Two formulae ϕ1 ∈ FOL s, i ϕ2 ∈ FOL are equivalent if, for
any structure S and for any S-assignment α,

S, α |= ϕ1 iff S, α |= ϕ2.

The fact that ϕ1 and ϕ2 are equivalent is denoted by ϕ1 ≡ ϕ2.

Example 82. We continue the previous example. We have that P(x, y) 6≡
P(y, x). Why?

Because there is an Σ-structure and an assignment in that structure such
that the two formulae have different truth values.

Let take the structure S5 = (Z, {<}, {+,−, 0}) defined in previous lectures
and S5-assignment α6 : X → Z, defined by α6(x) = 2, α6(y) = 3 s, i α6(z) = 1
for any z ∈ X \ {x, y}.

Note that the only difference between S1 and S5 is the fact that the predicate
symbol P is interpreted by the predicate = in S1, while in S5 is interpreted by
< (the relation less then is interpreted over integers).

We have S5, α6 |= P(x, y), because 2 < 3, but S5, α6 6|= P(y, x), because
3 6< 2. So the formulae P(x, y) and P(y, x) are not equivalent (even if they are
equivalent in the structure S1).
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Example 83. We have that ∀x.P(x, z) ≡ ∀y.P(y, z). Why?
Let S be any Σ-structure with the domain D and α : X → D any S-

assignment.
We have that

S, α |= ∀x.P(x, z) iff
for any u ∈ D, we have S, α[x 7→ u] |= P(x, z) iff

for any u ∈ D, we have PS
(
α[x 7→ u](x), α[x 7→ u](z)

)
iff

for any u ∈ D, we have PS
(
u, α(z)

)
iff

for any u ∈ D, we have PS
(
α[y 7→ u](y), α[y 7→ u](z)

)
iff

for any u ∈ D, we have S, α[y 7→ u] |= P(y, z) iff
S, α |= ∀y.P(y, z).

So, for any Σ-structure S, for any S-assignment α, we have that

S, α |= ∀x.P(x, z) iff S, α |= ∀y.P(y, z),

which is exactly the definition of ∀x.P(x, z) ≡ ∀y.P(y, z).

4.10 Exercises

We recall here the structures show in Example 41:

1. S1 = (Z, {=}, {+,−, 0});

2. S2 = (R∗, {=}, {×, ·−1, 1});

3. S3 = (N, {=}, {+, s, 0});

4. S4 = (N, {<}, {+, s, 0}).

5. S5 = (Z, {<}, {+,−, 0}).

These structures will be used in the exercises below.

Exercise 84. Establish whether the following sentences hold:

1. S1, α1 |= P(x2, x3);

2. S1, α1 |= ¬P(x2, x3);

3. S1, α1 |= ¬P(x2, x3) ∧ P(x1, x1);

4. S1, α1 |= ∃x3.P(x2, x3);

5. S1, α1 |= ∀x2.∃x3.P(x2, x3);
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6. S1, α1 |= ∃x3.∀x2.P(x2, x3);

7. S1, α2 |= ∀x2.∃x3.P(x2, i(x3));

Exercise 85. Find for each item below a S2-assignment α3 such that:

1. S2, α3 |= P(x1, x2);

2. S2, α3 |= P(f(x1, x2), x3);

3. S2, α3 |= P(f(x1, x2), i(x3));

4. S2, α3 |= P(x, e);

5. S2, α3 |= ∃y.P(x, i(y));

6. S2, α3 |= ∀y.∃x.P(x, i(y)).

Exercise 86. Show that the formulas below are valid in S2:

1. ∀x.∃y.P(x, i(y));

2. ∀x.P(f(x, e), x);

3. ∀x.P(x, i(i(x))).

Exercise 87. Show that ∀x.∃y.P(x, i(y)) is not valid in S3.

Exercise 88. Find a formula that is satisfiable in S1 but not satisfiable in
S3.

Exercise 89. Find a formula wihout free variables which is satisfiable in S5

but it is not satisfiable in S4.

Exercise 90. Show that ∀x.∃y.P(x, y) is not valid.

Exercise 91. Show that (∀x.P(x, x))→∃x2.P(x1, x2) is valid.

Exercise 92. Show that ∀x.∃y.P(y, x) is not valid.

Exercise 93. Show that ∀x.¬P(x, x) is satisfiable.

Exercise 94. Show that ∀x.¬P(x, x) ∧ ∃x.P(x, x) is not satisfiable.

Exercise 95. In Exercise 40 (in Chapter 3) we have shown that FOL is a
syntactic extension of PL. Briefly, if A = {p, q, r, . . .} is a set of propositional
variables then we build a signature ΣPL = {A, ∅}, where the propositional
variables in A are predicate symbols of arity 0.

The semantics of FOL formulas built over the signature ΣPL is consistent
with the semantics of PL formulas. Let τ : A → B be an assigment. Let
S = (D, {aS | a ∈ A}, ∅) a ΣLP-structure, where D is any nonempty set and
aS = τ(a), for all a ∈ A.

Prove that for any ϕ ∈ PL, we have τ |= ϕ iff S, α |= ϕ for all S-
assignments α : X → D.
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Chapter 5

Natural Deduction

In this chapter we present the natural deduction for first-order logic. We
define the notion of substitution, we recall several notions that we discussed for
natural deduction in propositional logic and we present an extended deductive
system together with their soundness and completeness properties.

Remark. The rules of the deductive system of the natural deduction includes
the rules presented for propositional logic. The latter are explained again
and exemplified on first-order formulas. The natural deduction of FOLalso
includes rules for cuantifiers. These rules are completely new.

5.1 Substitutions

Definition 96. A substitution is a function σ : X → T , with the property
that σ(x) 6= x for a finite number of variables x ∈ X .

Definition 97. If σ : X → T is a substitution, the set dom(σ) = {x ∈ X |
σ(x) 6= x} is the domain of the substitution σ.

Remark. By definition, the domain of a substitution is a finite set.

Definition 98. If σ : X → T is a substitution, then the unique extension of
the substitution σ to the set of terms is the function σ] : T → T , recursively
defined as follows:

1. σ](x) = σ(x), for any x ∈ X ;

2. σ](c) = c, for any constant symbol c ∈ F0;

3. σ](f(t1, . . . ,tn)) = f(σ](t1), . . . ,σ](tn)), for any functional symbol f ∈
Fn of arity n ∈ N∗ and any terms t1, . . . , tn ∈ T .
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The substitutions are noted by σ, τ, σ0, τ1, σ
′, etc.

Remark. If t ∈ T is a term, then σ](t) ∈ T is the term obtained from
t by applying to the substitution σ or the term obtained by applying the
substitution σ on the term t.

Practically, in order to obtain σ](t) from t, all occurences of a variable x
in t are replaced simultaneously with the corresponding term σ(x).

Example 99. Let consider the substitution σ1 : X → T defined as follows:

1. σ1(x1) = x2;

2. σ1(x2) = f(x3, x4);

3. σ1(x) = x for all x ∈ X \ {x1, x2}.

Let consider the term t = f(f(x1, x2), f(x3, e)) . We have that:

σ]1

(
t

)
= σ]1

(
f(f(x1, x2), f(x3, e))

)
= f(σ]1

(
f(x1, x2)

)
,σ]1

(
f(x3, e)

)
)

= f(f(σ]1

(
x1

)
,σ]1

(
x2

)
),f(σ]1

(
x3

)
,σ]1

(
e

)
))

= f(f(σ1

(
x1

)
,σ1

(
x2

)
),f(σ1

(
x3

)
,e))

= f(f(x2, f(x3, x4)), f(x3, e)).

Note that by applying a substitution over a term, we replace (in the same
time) all occurrences of the variables from the domain of the substitution with
the corresponding terms.

Notation. If dom(σ) = {x1, . . . , xn}, then the substitution σ cam be also
written as:

σ = {x1 7→ σ(x1), . . . , xn 7→ σ(xn)}.

Attention, it is not a set, but only some notation for substitutions.

Example 100. For the substitution from the previous example, we have

σ1 = {x1 7→ x2, x2 7→ f(x3, x4)}.

Definition 101. If σ : X → T is a substitution and V ⊆ X is a subset of
variables, then the restriction of the substitution σ to the set V is another
substitution σ|V : X → T , defined as follows:

1. σ|V (x) = σ(x) for any x ∈ V ;
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2. σ|V (x) = x for any x ∈ X \ V .

Example 102. For the substitution σ1 in Example 99, we have σ1|{x1} =
{x1 7→ x2} s, i σ1|{x2} = {x2 7→ f(x3, x4)}.

In other words, by restricting a substitution to a set of variables, we remove
some the other variables from the domain of the substitution.

Definition 103. for any substitution σ : X → T , the extention of σ to the
set of formulae is the function σ[ : FOL→ FOL, defined as:

1. σ[(P (t1, . . . ,tn)) = P (σ](t1), . . . ,σ](tn));

2. σ[(¬ϕ) = ¬σ[(ϕ);

3. σ[
(
(ϕ1 ∧ ϕ2)

)
= (σ[(ϕ1)∧σ[(ϕ2));

4. σ[
(
(ϕ1 ∨ ϕ2)

)
= (σ[(ϕ1)∨σ[(ϕ2));

5. σ[
(
(ϕ1 → ϕ2)

)
= (σ[(ϕ1)→σ[(ϕ2));

6. σ[
(
(ϕ1 ↔ ϕ2)

)
= (σ[(ϕ1)↔σ[(ϕ2));

7. σ[
(
(∀x.ϕ)

)
=
(
∀x.(ρ[(ϕ))

)
, where ρ = σ|dom(σ)\{x};

8. σ[
(
(∃x.ϕ)

)
=
(
∃x.(ρ[(ϕ))

)
, where ρ = σ|dom(σ)\{x};

In other words, to obtain the formula σ[(ϕ) from ϕ, every free occurrence
of the variable x from the formula ϕ is replaced by the term σ(x).

Example 104. Using the substitution σ1 in Example 99, we have that:

σ[1

((
∀x2.P(x1, x2)

)
∧ P(x2, x2)

)
=

σ[1

((
∀x2.P(x1, x2)

))
∧σ[1

(
P(x2, x2)

)
=(

∀x2.σ1|[{x1}
(
P(x1, x2)

))
∧P(σ]1

(
x2
)
,σ]1

(
x2
)
) =(

∀x2.P(σ1|]{x1}
(
x1
)
,σ1|]{x1}

(
x2
)
)
)
∧ P(σ1

(
x2
)
,σ1

(
x2
)
) =(

∀x2.P(σ1|{x1}
(
x1
)
,σ1|{x1}

(
x2
)
)
)
∧ P(f(x3, x4), f(x3, x4)) =(

∀x2.P(σ1
(
x1
)
, x2)

)
∧ P(f(x3, x4), f(x3, x4)) =(

∀x2.P(x2, x2)
)
∧ P(f(x3, x4), f(x3, x4)).

Remark. Attention: the bound occurrences of variables are NOT replaced
when applying the substitution! In Example 104, the occurrence of the variable
x2 in

(
∀x2.P(x1, x2)

)
is bound.
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Notation. According to Notation 5.1, for the substitutions with a finite do-
main, we also use the notation {x1 7→ σ(x1), . . . , xn 7→ σ(xn)}. We will also
use substitutions without associating a name to them, since they are simple
having the form : {x 7→ t}. In order to express the fact that we apply this sub-
stitution to a formula, according to our notation, we should write {x 7→ t}(ϕ).
However, in the literature other notations are preferred that we will also use.
One variant is to write ϕ[t/x]. Another one is ϕ[x 7→ t]. In this document we
will use the latter notation, namely ϕ[x 7→ t].

5.2 Sequences

Definition 105 (Sequence). A sequence is a pair formed by a set of formulae
{ϕ1, . . . , ϕn} ⊆ FOL and a formula ϕ ∈ FOL, denoted by:

{ϕ1, . . . , ϕn} ` ϕ.

sometimes we read the notation {ϕ1, . . . , ϕn} ` ϕ as ϕ is a syntactic
consequence from {ϕ1, . . . , ϕn}. Usually, we will note with Γ = {ϕ1, . . . , ϕn}
the set of hypothesis and we will write the sequence as Γ ` ϕ.

Remark. We recall that the usual notation in the literature allows us to write
ϕ1, . . . , ϕn ` ϕ (without curly brackets) instead of {ϕ1, . . . , ϕn} ` ϕ. However,
we have to remember that on the left side of the symbol ` is all the time a set.
The notation without brackets allows us to write ϕ1, . . . , ϕn, ψ ` ϕ instead of
{ϕ1, . . . , ϕn} ∪ {ψ} ` ϕ.

Example 106. In many examples from this material, we work with the sig-
nature Σ = ({P, Q}, {a, b, f, g}), where the predicate symbols P and Q have arity
1, the functional symbols f and g have arity 1, and the symbols a and b are
constants (of arity 0).

Example 107. Let consider the signature Σ from Example 106. The follow-
ing are some examples of sequences:

1. {P(a), Q(a)} ` (P(a) ∧ Q(a));

2. {∀x.Q(x), P(a)} ` (P(a) ∧ Q(a));

3. {∃x.Q(x)} ` Q(a).

Later we will see that the first two sequences from above are valid,and the
last one is not valid.

It is often convenient to write sequence without curly braces as in the next
example:
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Example 108. The sequences in Example 107 can be written without curly
braces as follows:

1. P(a), Q(a) ` (P(a) ∧ Q(a));

2. ∀x.Q(x), P(a) ` (P(a) ∧ Q(a));

3. ∃x.Q(x) ` Q(a).

5.3 Inference rules

Definition 109. An inference rule is a tuple formed from:

1. a set of sequences S1, . . . , Sn, called hypothesis of the rule;

2. a sequence S called conclusion of the rule;

3. a condition for the applicability of the rule;

4. a name.

An inference rule is noted as follows:

name
S1 . . . Sn

S
condition.

Remark. The inference rules that have n = 0 hypothesis, are called axioms.
Also, the applicability conditions may be absent.

Example 110. The following are some inference rules from propositional
logic:

∧i
Γ ` ϕ1 Γ ` ϕ2

Γ ` (ϕ1 ∧ ϕ2),
∧e1

Γ ` (ϕ1 ∧ ϕ2)

Γ ` ϕ1,
∧e2

Γ ` (ϕ1 ∧ ϕ2)

Γ ` ϕ2.

As in the case of propositional logic, all three inference rules from above
are correct. None of them has a applicability condition. The following is an
example of inference rule with n = 0 hypothesis, but with one condition.

Hypothesis
Γ ` ϕ

ϕ ∈ Γ.

Below we have an example of incorrect inference rule (in a way that we
will clarify later, but that can be already perceived).

Part II - First-Order Logic 47 Lecture notes - to print in color



Logic for Computer Science 2024-2025 Alexandru Ioan Cuza University

regulă incorectă
Γ ` ϕ2

Γ ` (ϕ1 ∧ ϕ2).

Remark. The hypothesis of the inference rule, as the conclusion, are in fact
patterns for sequences and not the sequences themselves. These patterns can
be instantiated, meaning that an inference rule (presented above) has several
instances obtained by replacing mathematical variables ϕ,ϕ′,Γ with concrete
formulae. For instance, here is a new instance for the rule ∧i from above:

∧i
{P(a), Q(a)} ` P(a) {P(a), Q(a)} ` Q(a)

{P(a), Q(a)} ` (P(a) ∧ Q(a));

∧i
{P(a), Q(a), Q(b)} ` (P(a) ∧ Q(a)) {P(a), Q(a), Q(b)} ` P(a)

{P(a), Q(a), Q(b)} ` ((P(a) ∧ Q(a)) ∧ P(a)).

We first replaced the mathematical variable Γ with the set of formulae
{P(a), Q(a)}, the mathematical variable ϕ with the formula P(a) and the math-
ematical variable ϕ′ with the formula Q(a). Exercise: establish with what was
replaced each mathematical variable from the second instance.

Here is an example of rule that is not an instance of a rule ∧i (exercise:
explain why not):

?
{P(a), Q(a)} ` P(a) {P(a), Q(a)} ` Q(a)

{P(a), Q(a)} ` (P(a) ∧ Q(a));

5.4 Deductive system

Definition 111. A deductive system is a set of inference rules.

Example 112. Let consider the deductive system D1, formed from the fol-
lowing four inference rules:

Hypothesis
Γ ` ϕ,

ϕ ∈ Γ ∧i
Γ ` ϕ1 Γ ` ϕ2

Γ ` (ϕ1 ∧ ϕ2),
∧e1

Γ ` (ϕ1 ∧ ϕ2)

Γ ` ϕ1,

∧e2
Γ ` (ϕ1 ∧ ϕ2)

Γ ` ϕ2.
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5.5 Formal proof

Definition 113 (Formal proof). A formal proof in a deductive system is a
list of sequences

1. S1

2. S2

. . .

n. Sn,

with the property that each sequence Si is justified by a inference rule of the
deductive system applied on the previous sequences (S1, . . . , Si−1), meaning
that Si is the conclusion of an instance of an inference rule from the deductive
rule, rule that uses as hypothesis sequences chosen from S1, . . . , Si−1. In
addition, if the inference rule has a condition, this condition has to be true.
Note also that any prefix of a formal proof is also a proof.

Example 114. Here is an example of formal proof in the deductive system
D1 from above:

1. {P(a), Q(a)} ` P(a); ( Hypothesis)

2. {P(a), Q(a)} ` Q(a); ( Hypothesis)

3. {P(a), Q(a)} ` (P(a) ∧ Q(a)); (∧i, 1, 2)

4. {P(a), Q(a)} ` (Q(a) ∧ (P(a) ∧ Q(a))). (∧i, 2, 3)

As in the case of propositional logic, each line has the name of the applied
inference rule and the lines where the needed hypothesis are found (in the same
order used to present the deductive system).

Remark. The definition of the formal proof in the first order logic is the
same as in the case of propositional logic. However, we will see later that in
order to apply the new inference rules, associated to the quantifiers, we will
use new annotations for the lines of the formal proof.

Definition 115 (Valid sequence). A sequence Γ ` ϕ is valid in a deductive
system D if there is a formal proof S1, . . . , Sn in D such that Sn = Γ ` ϕ.

Example 116. The sequence {P(a), Q(a)} ` (P(a) ∧ Q(a)) is valid in the
deductive system D1 from above because is the last sequence from the following
formal proof:

1. {P(a), Q(a)} ` P(a); ( Hypothesis)
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2. {P(a), Q(a)} ` Q(a); ( Hypothesis)

3. {P(a), Q(a)} ` (P(a) ∧ Q(a)); (∧i, 1, 2)

Remark. Attention! Do not mix the notions of valid sequence in a deductive
system and the notion of valid formula.

5.6 Natural deduction

Natural deduction is a deductive system for the first order logic. In other
words, the deductive system for first order logic includes all the rules of natural
deduction from propositional logic. In addition, for first order logic we have
new rules for the introduction and elimination of quantifiers. In this section
we will present each inference rule from natural deduction of first order logic.

5.6.1 Rules for conjunctions

We already saw the inference rules for the introduction and elimination for
the ”and” connector:

∧i
Γ ` ϕ1 Γ ` ϕ2

Γ ` (ϕ1 ∧ ϕ2),
∧e1

Γ ` (ϕ1 ∧ ϕ2)

Γ ` ϕ1,
∧e2

Γ ` (ϕ1 ∧ ϕ2)

Γ ` ϕ2.

This deductive system is called natural because the inference rules mimic
the reasoning of humans, based in essence on an intuitive semantics for the
notion of truth:

1. The rule for the introduction of the connector ∧ indicates that we can
prove a conjunction (ϕ1 ∧ ϕ2) from the set of hypothesis Γ if we already
know that each part of the conjunction, ϕ1 and respectively ϕ2, are
consequences of the hypotheses from Γ.

In other words, in order to prove a conjunction from a set of hypotheses,
is enough to establish individually that each part of the conjunction is
a consequence of the hypothesis.

2. For the ∧ connector, we have two rules for elimination. First elimination
rule for the ∧ connector says that if we already established that some
conjunction (ϕ1 ∧ ϕ2) is the consequence of a set Γ of hypotheses, then
the left side of the conjunction, ϕ1, is a consequence of the set Γ.

The second rule is symmetric with respect to the first and says that we
can conclude that the right side of the conjunction is the consequence
of a set of formulae if the conjunction is is the consequence of this set
of formulae.
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Here is an example of formal proof that uses the inference rules for the
connector ∧:

1. {(P(a) ∧ Q(a)),∀x.P(x)} ` (P(a) ∧ Q(a)); (Hypothesis)

2. {(P(a) ∧ Q(a)),∀x.P(x)} ` ∀x.P(x); (Hypothesis)

3. {(P(a) ∧ Q(a)),∀x.P(x)} ` P(a); (∧e1, 1)

4. {(P(a) ∧ Q(a)),∀x.P(x)} ` (P(a) ∧ ∀x.P(x)). (∧i, 3, 2)

5.6.2 Rules for implication

The rule for the elimination of the implication, also called modus ponens in
latin, is one of the most important rules of inference that we apply.

→e
Γ ` (ϕ1 → ϕ2) Γ ` ϕ1

Γ ` ϕ2

The rule shows that, supposing that we proved ϕ→ϕ′ (from Γ) and in
addition we proved that ϕ (also from Γ), then we can prove ϕ′ (from Γ).

Here is an example of formal proof that uses the rule for the elimination
of the implication:

1. {(P(a) → ∀x.P(x)), (P(a) ∧ Q(a))} ` (P(a) ∧ Q(a)); (Hypothesis)

2. {(P(a) → ∀x.P(x)), (P(a) ∧ Q(a))} ` P(a); (∧e1, 1)

3. {(P(a) → ∀x.P(x)), (P(a) ∧ Q(a))} ` (P(a) → ∀x.P(x)); (Hypothesis)

4. {(P(a) → ∀x.P(x)), (P(a) ∧ Q(a))} ` ∀x.P(x). (→e, 3, 1)

This proof shows that the sequence {(P(a) → ∀x.P(x)), (P(a) ∧ Q(a))} `
∀x.P(x) is valid, meaning that the formula ∀x.P(x) is a consequence of the set
of formulae {(P(a) → ∀x.P(x)), (P(a) ∧ Q(a))}. Observe the order in which
the lines 3 and 1 appear in the explanation for line 4: they follow the same
order, fixed by the inference rule.

Exercise 117. Prove that the following sequences are valid:

1. {((P(a) ∧ Q(a))→∀x.P(x)), P(a), Q(a)} ` ∀x.P(x);

2. {(P(a)→∀x.P(x)), P(a), Q(a)} ` (Q(a) ∧ ∀x.P(x)).
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The rule for introducing the implication is subtle. In order to prove that
an implication (ϕ1 → ϕ2) follows from Γ, we suppose ϕ1 (besides Γ) and
prove ϕ2. In other words, in the hypothesis for the rule, we add the formula
ϕ1 to the formulae from Γ. The rule may be written in two equivalent ways,
that differ only by the fact that the first rule uses the convention referring to
the curly brackets around premises from the notations of sequences, while in
the second one the brackets appear explicitly:

→ i
Γ, ϕ1 ` ϕ2

Γ ` (ϕ1 → ϕ2),
→ i

Γ ∪ {ϕ1} ` ϕ2

Γ ` (ϕ1 → ϕ2).

It is important to observe and understand for rule of introduction of im-
plication is that the set of premises changes. In the conclusion we have that
the formula (ϕ1 → ϕ2) follows from Γ, while in the hypothesis we have to
prove that ϕ2 follows from the premises Γ∪{ϕ1}. In other words, intuitively,
in order to prove an implication (ϕ1 → ϕ2), we suppose the antecedent ϕ1

and prove ϕ2.

Example 118. Let’s prove that the sequence {} ` (P(a) → P(a)) is valid:

1. {P(a)} ` P(a); ( Hypothesis)

2. {} ` (P(a) → P(a)). (→i, 1)

Example 119. {(P(a) → Q(a)), (Q(a) → P(b))} ` (P(a) → P(b)) is valid:

1. {(P(a) → Q(a)), (Q(a) → P(b)), P(a)} ` (P(a) → Q(a)); ( Hypothesis)

2. {(P(a) → Q(a)), (Q(a) → P(b)), P(a)} ` P(a); ( Hypothesis)

3. {(P(a) → Q(a)), (Q(a) → P(b)), P(a)} ` Q(a); (→e, 1, 2)

4. {(P(a) → Q(a)), (Q(a) → P(b)), P(a)} ` (Q(a) → P(b)); ( Hypothesis)

5. {(P(a) → Q(a)), (Q(a) → P(b)), P(a)} ` P(b); (→e, 4, 3)

6. {(P(a) → Q(a)), (Q(a) → P(b))} ` (P(a) → P(b)). (→i, 5)

Exercise 120. Prove that the following sequences are valid:

1. {((P(a) ∧ Q(a))→ P(b)), P(a), Q(a)} ` P(b);

2. {((P(a) ∧ Q(a))→ P(b))} ` (P(a)→(Q(a)→ P(b)));

3. {(P(a)→(Q(a)→ P(b)))} ` ((P(a) ∧ Q(a))→ P(b)).
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5.6.3 Rules for disjunction

The connector ∨ has two introduction rules:

∨i1
Γ ` ϕ1

Γ ` (ϕ1 ∨ ϕ2),
∨i2

Γ ` ϕ2

Γ ` (ϕ1 ∨ ϕ2).

The first rule shows that if we know ϕ1 (from Γ), then we also know
(ϕ1 ∨ ϕ2) (from Γ), no matter what ϕ2 is. The second rule of elimination is
symmetric, for the right side of the disjunction.

Example 121. Let’s prove that {(P(a) ∧ Q(a))} ` (P(a) ∨ Q(a)) is valid:

1. {(P(a) ∧ Q(a))} ` (P(a) ∧ Q(a)); ( Hypothesis)

2. {(P(a) ∧ Q(a))} ` P(a); (∧e1, 1)

3. {(P(a) ∧ Q(a))} ` (P(a) ∨ Q(a)). (∨i1, 2)

Another formal proof of the sequence is the following:

1. {(P(a) ∧ Q(a))} ` (P(a) ∧ Q(a)); ( Hypothesis)

2. {(P(a) ∧ Q(a))} ` Q(a); (∧e2, 1)

3. {(P(a) ∧ Q(a))} ` (P(a) ∨ Q(a)). (∨i2, 2)

The proof for the elimination of disjunction is a little mor complicated,
being another rule in which the set of premises of the sequences changes from
hypotheses to conclusion:

∨e
Γ ` (ϕ1 ∨ ϕ2) Γ, ϕ1 ` ϕ′ Γ, ϕ2 ` ϕ′

Γ ` ϕ′

The first hypothesis of the rule, Γ ` (ϕ1 ∨ ϕ2), is easy to understand: in
order to “remove” a disjunction, we need a disjunction between the hypotheses
(disjunction that we want to “eliminate”). The last two hypothesis of the
elimination rule of disjunction has to be understood intuitively as follows.
From the first hypothesis we know (ϕ1 ∨ ϕ2) (from Γ); in other words, at least
one of the formulae ϕ1 and respectively ϕ2 follows from Γ. The hypotheses
2 and 3 indicates that, no matter which of the formulae ϕ1 or ϕ2 holds, in
any case ϕ′ holds. That is, if we suppose ϕ1 (besides Γ), ϕ′ holds, and if we
suppose ϕ2 (besides Γ), ϕ′ still holds. And therefore the conclusion indicates
that ϕ′ holds no matter which one of the formulae ϕ1 and respectively ϕ2

would hold.
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Example 122. Let us prove that the sequence {(P(a) ∨ Q(a))} ` (Q(a) ∨ P(a))
is valid:

1. {(P(a) ∨ Q(a)), P(a)} ` P(a); ( Hypothesis)

2. {(P(a) ∨ Q(a)), P(a)} ` (Q(a) ∨ P(a)); (∨i2, 1)

3. {(P(a) ∨ Q(a)), Q(a)} ` Q(a); ( Hypothesis)

4. {(P(a) ∨ Q(a)), Q(a)} ` (Q(a) ∨ P(a)); (∨i1, 1)

5. {(P(a) ∨ Q(a))} ` (P(a) ∨ Q(a)); ( Hypothesis)

6. {(P(a) ∨ Q(a))} ` (Q(a) ∨ P(a)). (∨e, 5, 2, 4)

Note the way in which the set of premises changes from a sequence to the
other in the formal proof, following the inference rules.

Exercise 123. Find a formal proof for the sequence

{(P(a) ∨ Q(a)), (P(a)→ P(b)), (Q(a)→ P(b))} ` P(b).

5.6.4 Rules for negation

The rules for the introduction end elimination of the negation are presented
together with a rule for the elimination of ⊥:

¬i
Γ, ϕ ` ⊥
Γ ` ¬ϕ

¬e
Γ ` ϕ Γ ` ¬ϕ

Γ ` ⊥
⊥e

Γ ` ⊥
Γ ` ϕ

Let us recall that ⊥ is a logical connector of arity 0. In other words, the
connector ⊥ does not change in the formula. The semantics of the formula ⊥
is such that it is false in any structure and any assignment. In other words,
⊥ is a contradiction.

The first rule , for the introduction of negation, is easy to explayn intu-
itively: how can we prove that a formula of the form ¬ϕ follows from Γ? We
suppose, in addition besides Γ, that we have ϕ and prove that from Γ and
ϕ follows a contradiction (Γ, ϕ ` ⊥). In this way, we prove that ¬ϕ follows
from Γ.

The second rule, for the elimination of negation, indicates that if a for-
mula ϕ, as well as its negation, ¬ϕ, follow from the same set of premises Γ,
then, from Γ also follow a contradiction, ⊥. A set Γ from which follow a
contradiction is called inconsistent.

The third rule indicates that, if Γ is an inconsistent set of formulae, then
any formula ϕ follow from Γ.
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There is no rule for the introduction of ⊥ (or, the rule for the elimination
of negation can be considered also as being the rule for the introduction of
⊥).

Example 124. Let us prove that the sequence {P(a)} ` ¬¬P(a) is valid:

1. {P(a),¬P(a)} ` P(a); ( Hypothesis)

2. {P(a),¬P(a)} ` ¬P(a); ( Hypothesis)

3. {P(a),¬P(a)} ` ⊥; (¬e, 1, 2)

4. {P(a)} ` ¬¬P(a). (¬i, 3)

Example 125. Let us prove that the sequence {P(a),¬P(a)} ` P(b) is valid:

1. {P(a),¬P(a)} ` P(a); ( Hypothesis)

2. {P(a),¬P(a)} ` ¬P(a); ( Hypothesis)

3. {P(a),¬P(a)} ` ⊥; (¬e, 1, 2)

4. {P(a),¬P(a)} ` P(b). (⊥e, 3)

Elimination of double negation

In the case of propositional logic, we also saw the following rule for the elim-
ination of the double negation:

¬¬e
Γ ` ¬¬ϕ

Γ ` ϕ

Example 126. Let us prove that the sequence {(¬P(a) → Q(a)),¬Q(a)} `
P(a) is valid:

1. {(¬P(a) → Q(a)),¬Q(a),¬P(a)} ` ¬P(a); ( Hypothesis)

2. {(¬P(a) → Q(a)),¬Q(a),¬P(a)} ` (¬P(a) → Q(a)); ( Hypothesis)

3. {(¬P(a) → Q(a)),¬Q(a),¬P(a)} ` Q(a); (→ e, 2, 1)

4. {(¬P(a) → Q(a)),¬Q(a),¬P(a)} ` ¬Q(a); ( Hypothesis)

5. {(¬P(a) → Q(a)),¬Q(a),¬P(a)} ` ⊥; (¬i, 4, 3)

6. {(¬P(a) → Q(a)),¬Q(a)} ` ¬¬P(a); (¬i, 5)

7. {(¬P(a) → Q(a)),¬Q(a)} ` P(a). (¬¬e, 6)
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Example 127. Let us prove that the sequence {} ` (P(a) ∨ ¬P(a)) is valid:

1. {¬(P(a) ∨ ¬P(a)), P(a)} ` ¬(P(a) ∨ ¬P(a)); ( Hypothesis)

2. {¬(P(a) ∨ ¬P(a)), P(a)} ` P(a); ( Hypothesis)

3. {¬(P(a) ∨ ¬P(a)), P(a)} ` (P(a) ∨ ¬P(a)); (∨i1, 2)

4. {¬(P(a) ∨ ¬P(a)), P(a)} ` ⊥; (¬e, 1, 3)

5. {¬(P(a) ∨ ¬P(a))} ` ¬P(a); (¬i, 4)

6. {¬(P(a) ∨ ¬P(a))} ` (P(a) ∨ ¬P(a)); (∨i2, 5)

7. {¬(P(a) ∨ ¬P(a))} ` ¬(P(a) ∨ ¬P(a)); ( Hypothesis)

8. {¬(P(a) ∨ ¬P(a))} ` ⊥; (¬e, 7, 6)

9. {} ` ¬¬(P(a) ∨ ¬P(a)); (¬i, 8)

10. {} ` (P(a) ∨ ¬P(a)). (¬¬e, 9)

5.6.5 Elimination of universal quantifier

The rule for the elimination of the universal quantifier is:

∀e
Γ ` (∀x.ϕ)

Γ ` ϕ[x 7→ t]
vars(t) ∩ bound(ϕ) = ∅

The elimination rule for the universal quantifier is quite simple: if we know
that (∀x.ϕ) is a syntactic consequence from Γ, then we can instantiate the
bound variable x with any term t such that t has no bound variables in ϕ.

Exercise 128. Question: does the previous rule make sense if x does not
appear in ϕ? For instance, from (∀x.ϕ) can we deduce Γ ` P(a)[x 7→ b]?

Example 129. Let us go back to an example previously discussed in which
we have the two affirmations: All men are mortal and Socrate is a man. Can
we conclude that Socrate is mortal? In order to answer to the question, we
have to prove the sequence:

{∀x.(Man(x)→ Mortal(x)), Man(s)} ` Mortal(s),

where Man and Mortal are predicates of arity 1 and s is a constant (functional
symbol of arity 0) associated to the name Socrates. Here is the formal proof
for the sequence:
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1. {∀x.(Man(x) → Mortal(x)), Man(s)} ` ∀x.(Man(x) → Mortal(x)) (Hyp)

2. {∀x.(Man(x) → Mortal(x)), Man(s)} ` (Man(s) → Mortal(s)) (∀e, 1, s)
3. {∀x.(Man(x) → Mortal(x)), Man(s)} ` Man(s) (Hyp)

4. {∀x.(Man(x) → Mortal(x)), Man(s)} ` Mortal(s) (→ e, 2, 3)

Note that at step 2 of the proof, we used the rule ∀e which instanti-
ates in the formula ∀x.(Man(x) → Mortal(x)) the bound variable x with s:
(Man(s) → Mortal(s)). In natural language, this is similar with deducing by
reasoning that If Socrates is a man, then he is mortal from All men are mortal.

5.6.6 Introduction of existential quantifier

There is a duality of rules for the introduction and the elimination of quanti-
fiers in the sense that the rule for introducing the existential quantifier from
below can be seen as a dual rule for the elimination of universal quantifier:

∃i
Γ ` ϕ[x 7→ t]

Γ ` (∃x.ϕ)
vars(t) ∩ bound(ϕ) = ∅

The rule indicates that we can deduce (∃x.ϕ) when ϕ[x 7→ t] is a semantical
consequence from Γ. Informally, if there is a concrete x — namely t — such
that ϕ[x 7→ t] is true (such that t has no bound variables in ϕ), we conclude
that (∃x.ϕ) is true.

Example 130. Let us prove that the sequence {P(a)} ` ∃x.P(x) is valid:

1. {P(a)} ` P(a) (Hypothesis)

2. {P(a)} ` ∃x.P(x) (∃i, 1)

Note that in this case ϕ is P(x) and ϕ[x 7→ a] is P(x)[x 7→ a].

Example 131. Let us prove that the sequence {∀x.(P(x) → Q(x)), P(a)} `
∃x.Q(x) is valid:

1. {∀x.(P(x) → Q(x)), P(a)} ` ∀x.(P(x) → Q(x)) (Hypothesis)

2. {∀x.(P(x) → Q(x)), P(a)} ` P(a) (Hypothesis)

3. {∀x.(P(x) → Q(x)), P(a)} ` (P(a) → Q(a)) (∀e, 1, a)

4. {∀x.(P(x) → Q(x)), P(a)} ` Q(a) (→e, 3, 2)

5. {∀x.(P(x) → Q(x)), P(a)} ` ∃x.Q(x) (∃i, 4)
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5.6.7 Introduction of universal quantifier.

The rule for the introduction of the universal quantifier is:

∀i
Γ ` ϕ[x 7→ x0]

Γ ` (∀x.ϕ)
x0 6∈ vars(Γ, ϕ)

The rule from above says that we can conclude Γ ` ∀x.ϕ if we first prove
that ϕ[x 7→ x0] is a syntactical consequence from Γ, where x0 is a new variable:
it does not appear in other formulae and we make no assumption over it.

Example 132. Let us prove that the sequence {∀x.(P(x) → Q(x)),∀x.P(x)} `
∀x.Q(x) is valid:

1. {∀x.(P(x) → Q(x)),∀x.P(x)} ` ∀x.(P(x) → Q(x)) (Hypothesis)

2. {∀x.(P(x) → Q(x)),∀x.P(x)} ` ∀x.P(x) (Hypothesis)

3. {∀x.(P(x) → Q(x)),∀x.P(x)} ` (P(x0) → Q(x0)) (∀e, 1, x0)

4. {∀x.(P(x) → Q(x)),∀x.P(x)} ` P(x0) (∀e, 2, x0)

5. {∀x.(P(x) → Q(x)),∀x.P(x)} ` Q(x0) (→e, 3, 4)

6. {∀x.(P(x) → Q(x)),∀x.P(x)} ` ∀x.Q(x) (∀i, 5)

Note that for the sequences 3, 4 and 5, we use the variable x0 about which
we make no assumption. Therefore, intuitively, Q(x0) holds for any x0.

Exercise 133. Prove that the following sequences are valid:

1. {∀x.(P(x) ∧ Q(x))} ` ∀x.P(x);

2. {∀x.Q(x), P(a)} ` P(a) ∧ Q(a);

3. {∀x.P(x),∀x.Q(x)} ` ∀x.(P(x) ∧ Q(x)).

5.6.8 Elimination of existential quantifier

The rule for the elimination of the existential quantifier is the following:

∃e
Γ ` (∃x.ϕ) Γ ∪ {ϕ[x 7→ x0]} ` ψ

Γ ` ψ
x0 6∈ vars(Γ, ϕ, ψ)

The first hypothesis of the rule is Γ ` (∃x.ϕ), which, intuitively, ensures
us that there is at least one term (they can be several) that can replace x
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such that ϕ is a syntactical consequence from Γ. However, we don’t know
which are this terms (in the case they are several). We only know that there
is at least one and we call it x0. In order to prove the conclusion, that ψ is a
syntactical consequence from Γ, we have to analyze several cases for x0. This
is summarized by the second hypothesis of the rule, where we have to prove
that ψ is a syntactical consequence from Γ ∪ {ϕ[x 7→ x0]}.

Example 134. Let us prove that the sequence {∀x.(P(x) → Q(x)),∃x.P(x)} `
∃x.Q(x) is valid:

1. {∀x.(P(x) → Q(x)),∃x.P(x)} ` ∃x.P(x) (Hypothesis)

2. {∀x.(P(x) → Q(x)),∃x.P(x), P(x0)} ` P(x0) (Hypothesis)

3. {∀x.(P(x) → Q(x)),∃x.P(x), P(x0)} ` ∀x.(P(x) → Q(x)) (Hypothesis)

4. {∀x.(P(x) → Q(x)),∃x.P(x), P(x0)} ` (P(x0) → Q(x0)) (∀e, 3, x0)

5. {∀x.(P(x) → Q(x)),∃x.P(x), P(x0)} ` Q(x0) (→e, 4, 2)

6. {∀x.(P(x) → Q(x)),∃x.P(x), P(x0)} ` ∃x.Q(x) (∃i, 5)

7. {∀x.(P(x) → Q(x)),∃x.P(x)} ` ∃x.Q(x) (∃e, 1, 6)

Note that in order to prove the 7th sequence, we used sequences 1 and 6. The
former one was proved by steps 2,3,4 and 5, where we also used as a hypothesis
the formula P(x0)(= P(x)[x 7→ x0]).

5.6.9 Other rules

Another useful rule, that does not necessary corresponds to some operator, is
the extension rule, that was also presented in the case of natural deduction
for propositional logic:

Extension
Γ ` ϕ

Γ, ϕ′ ` ϕ

This rule indicates the fact that, if ϕ is a consequence from a set of formulas
Γ, then ϕ is also a consequence of Γ ∪ {ϕ′} (for any ϕ′). In other words, we
can extend the set of premises of a valid sequence and we get another valid
sequence.

Example 135. Here is a proof of {P(a),¬Q(a), P(f(a)), (P(b) ∧ Q(b))} `
¬¬P(a):

1. {P(a),¬P(a)} ` P(a); ( Hypothesis)
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2. {P(a),¬P(a)} ` ¬P(a); ( Hypothesis)

3. {P(a),¬P(a)} ` ⊥; (¬e, 1, 2)

4. {P(a)} ` ¬¬P(a); (¬i, 3)

5. {P(a),¬Q(a)} ` ¬¬P(a); ( Extindere, 4)

6. {P(a),¬Q(a), P(f(a))} ` ¬¬P(a); ( Extindere, 5)

7. {P(a),¬Q(a), P(f(a)), (P(b) ∧ Q(b))} ` ¬¬P(a). ( Extindere, 6)

5.7 Natural deduction system

The natural deduction for first order logic is the deductive system formed by
all rules presented in the previous section. Here is the sum up of all rules:
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∧i
Γ ` ϕ1 Γ ` ϕ2

Γ ` (ϕ1 ∧ ϕ2),
∧e1

Γ ` (ϕ1 ∧ ϕ2)

Γ ` ϕ1,

∧e2
Γ ` (ϕ1 ∧ ϕ2)

Γ ` ϕ2,
→ e

Γ ` (ϕ1 → ϕ2) Γ ` ϕ1

Γ ` ϕ2,

→ i
Γ, ϕ1 ` ϕ2

Γ ` (ϕ1 → ϕ2),
∨i1

Γ ` ϕ1

Γ ` (ϕ1 ∨ ϕ2),
∨i2

Γ ` ϕ2

Γ ` (ϕ1 ∨ ϕ2),

∨e
Γ ` (ϕ1 ∨ ϕ2) Γ, ϕ1 ` ϕ′ Γ, ϕ2 ` ϕ′

Γ ` ϕ′,

¬e
Γ ` ϕ Γ ` ¬ϕ

Γ ` ⊥,
¬i

Γ, ϕ ` ⊥
Γ ` ¬ϕ,

⊥e
Γ ` ⊥
Γ ` ϕ,

Hypothesis
Γ ` ϕ

ϕ ∈ Γ, Extindere
Γ ` ϕ

Γ, ϕ′ ` ϕ,
¬¬e

Γ ` ¬¬ϕ
Γ ` ϕ.

∀e
Γ ` (∀x.ϕ)

Γ ` ϕ[x 7→ t]
vars(t) ∩ bound(ϕ) = ∅

∃i
Γ ` ϕ[x 7→ t]

Γ ` (∃x.ϕ)
vars(t) ∩ bound(ϕ) = ∅

∀i
Γ ` ϕ[x 7→ x0]

Γ ` (∀x.ϕ)
x0 6∈ vars(Γ, ϕ)

∃e
Γ ` (∃x.ϕ) Γ ∪ {ϕ[x 7→ x0]} ` ψ

Γ ` ψ
x0 6∈ vars(Γ, ϕ, ψ)

In proofs we are allowed to use derived rules (including the ones presented
for propositional logic).

5.8 Soundness and Completeness of Natural
Deduction for Forst Order Logic

Theorem 136 (Soundness for natural deduction). For any set Γ of formulae
and any formula ϕ, if the sequence Γ ` ϕ is valid, then Γ |= ϕ.
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Exercise 137. Prove Theorem 136.

Theorem 138 (Completeness for natural deduction). For any set Γ of for-
mulae and any formula ϕ, if Γ |= ϕ then the sequence Γ ` ϕ is valid.

The proof of the completeness theorem exceeds the level of this course.

Remark. Note that, using the two soundness and completeness theorems, the
relation ` coincides with |=, even if they have different meanings.

5.9 Exercises

Exercise 139. Prove that the next sequences are valid:

1. {((P(a) ∧ Q(a)) ∧ ∀x.P(x))} ` (Q(a) ∧ ∀x.P(x));

2. {((P(a) ∧ Q(a)) ∧ ∀x.P(x)),∀x.Q(x)} ` (∀x.Q(x) ∧ Q(a));

3. {((P(a) ∧ Q(a)) ∧ ∀x.P(x))} ` (∀x.P(x) ∧ (Q(a) ∧ P(a)));

4. {((P(a) ∧ Q(a)) → ∀x.P(x)), P(a), Q(a)} ` ∀x.P(x);

5. {(P(a) → ∀x.P(x)), P(a), Q(a)} ` (Q(a) ∧ ∀x.P(x));

6. {(P(a) → P(b)), (Q(a) → P(b))} ` ((P(a) ∨ Q(a)) → P(b));

7. {¬(P(a) ∧ Q(a))} ` (¬P(a) ∨ ¬Q(a));

8. {¬(¬P(a) ∨ ¬Q(a))} ` (P(a) ∧ Q(a));

9. {¬(¬P(a) ∧ ¬Q(a))} ` (P(a) ∨ Q(a));

Exercise 140. Which of the following sequences are valid?

1. {∀x.(P(x) ∧ Q(x))} ` ∀x.P(x);

2. {∀x.Q(x), P(a)} ` (P(a) ∧ Q(a));

3. {∀x.P(x),∀x.Q(x)} ` ∀x.(P(x) ∧ Q(x));

4. {∃x.∃y.P(x, y)} ` ∃y.∃x.P(x, y);

5. {∃x.∀y.P(x, y)} ` ∀y.∃x.P(x, y); What about {∀y.∃x.P(x, y)} ` ∃x.∀y.P(x, y)?

6. {¬(∃x.P(x))} ` ∀x.¬P(x);

7. {∀x.¬P(x)} ` ¬(∃x.P(x));
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